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We present results of a multiyear study of the Everglades (Florida, USA) detailing how differences in environ-
mental variables can alter mercury concentrations in the food web. About 1000 random locations throughout
the freshwater Everglades marsh have been sampled for the United States Environmental Protection Agency's
Everglades Regional Environmental Monitoring and Assessment Program (“REMAP”) since 1995. REMAP sam-
pling is synoptic and multimedia, including an abundant prey fish (eastern mosquitofish, Gambusia holbrooki)
as an indicator of mercury bioaccumulation. Amplifying an approach we reported to Everglades National Park,
we used Generalized Boosted Models on the REMAP data to estimate how much of the mercury concentration
in mosquitofish could be explained by water quality constituents or indicators of ecological health (covariates).
The resulting model accounts for 60% of the environmental influence on variation in mosquitofish mercury, a ro-
bust outcome for a large, disturbed ecosystem such as the Everglades, given its seasonal, annual, and spatial dif-
ferences. Of the eight most influential covariates, two were methyl mercury in periphyton and water, two can be
indicators of trophic state (alkaline phosphatase and chlorophyll-a), one can be a marker of stormwater transport
(conductivity), and two can be enablers of mercury methylation (sulfate in soil and water). While these covari-
ates had an average individual influence ranging from 4.0% to 10.1%, together they accounted for 52.2% of the
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total relative influence. Water with low phosphorus, but with sulfur and carbon above background, moved into
the less disturbed parts of the Everglades via modifications to the existing water management system, could in-

crease mercury bioaccumulation in those parts of the marsh.

© 2021 Published by Elsevier B.V.

1. Introduction

Mercury contamination of fish, including gamefish, and wildlife in
the Florida Everglades (USA) has been a concern of agencies that man-
age natural resources and a focus of research and monitoring since the
1990s (Scheidt and Kalla, 2007). Fish consumption advisories are in
place for several species of gamefish throughout the Everglades
(FDOH, 2019). Ecological risk assessments and mercury dosing studies
have indicated that populations of top predators in the Everglades
could be adversely affected by mercury contamination, in that mercury
accumulation through the food web has the potential to reduce the
health or breeding success of wading birds (Spalding et al., 2000;
Duvall and Barron, 2000; Rumbold, 2005, 2019b; Rumbold et al.,
2008; Zabala et al., 2020) and the Florida panther (Barron et al.,, 2004;
Rumbold, 2019b).

Inorganic mercury deposited into surface water from the atmosphere
can be converted to methylmercury (MeHg) by bacteria in the presence
of sulfate (Orem et al., 2011) and organic carbon (Aiken et al., 2011).
Sulfate-reducing anaerobic bacteria have most often been associated
with robust mercury methylation in the literature, though many other an-
aerobes, notably iron reducers and methanogens, have also been reported
as methylators (Regnell and Watras, 2019). Methylmercury is the toxic
form of mercury that strongly bioaccumulates and biomagnifies in the
aquatic food chain (Hammerschmidt and Fitzgerald, 2006; Seixas et al.,
2014). Atmospheric deposition is the predominant source of mercury to
the Everglades (FDEP, 2013). It is estimated that 85% to 95% of the mer-
cury deposited on the Everglades comes from sources outside of the
United States (reviewed in Vijayaraghavan and Pollman, 2019).

Data on mercury contamination from Everglades REMAP have been
modeled by previous investigators, notably Thornton (in Stober et al.,
2001) and Pollman (2014). These efforts were undertaken approxi-
mately midway through the history of REMAP. They featured structural
equation modeling, and included variables that implicitly reflect trophic
state and habitat quality. The present study is based on a different
modeling technique applied to all REMAP data to date (USEPA, 2021),
and it builds on their work to explore further the relationships between
mercury methylation, trophic state, and habitat quality, and resultant
efficiency of mercury biomagnification. This paper is an outgrowth of
earlier work done for Everglades National Park (Kalla et al., 2019),
using a similar model structure but with a modified approach to han-
dling the data and generating model outputs. In the earlier work we
parsed the data by year and season of collection, and we included no re-
sults on the variability of the model outputs. Here, we refine our analysis
by focusing on a single model that spans all years and seasons, after re-
moving those covariates found to be highly correlated with other covar-
iates, to facilitate a clearer interpretation of covariate importance in the
final model. We also include confidence intervals and standard devia-
tions for the relationships.

The objective of our work was to characterize relationships between
measured covariates and mosquitofish mercury levels, using a general
statistical modeling framework that could enable prediction of varia-
tions in mosquitofish mercury (fish Hg) concentrations across the
Everglades. This model would help identify factors that are most influ-
ential on temporal and spatial fluctuations in fish Hg. The dataset was
comprised of measurements of mercury in mosquitofish and other eco-
system compartments; physico-chemical measurements of ambient
waters, flocculant detrital matter (floc), and soil; and categorical envi-
ronmental factors such as habitat type and geographical subarea.

2. Study area

The Florida Everglades is one of the largest freshwater marshes in
the world (Ramsar Convention, 2006). In its undisturbed reaches, it is
an oligotrophic wetland that is a mosaic of sawgrass, wet prairies, and
sloughs, featuring calcareous periphyton as the characteristic algal com-
munity, and tree islands, some of which support subtropical species
(Lodge, 2019). Periphyton is the dominant primary producer in the na-
tive marsh (Browder et al., 1994; Gaiser, 2009) and an important food
source for primary and secondary aquatic consumers in the Everglades
(Liston and Trexler, 2005) and elsewhere (Hart and Lovvorn, 2003). The
natural periphyton community is highly sensitive to elevated phospho-
rus levels. Background surface water phosphorus can be as low as the lab-
oratory analytical method detection limit of 2 pg/L (Julian, 2016). As
phosphorus concentration increases above 10 pg/L, the cyanobacterial-
diatom assemblage characteristic of oligotrophic conditions is replaced
by filamentous green algae (McCormick and O'Dell, 1996), and the native
periphyton community is lost (McCormick et al., 2009). Phosphorus-
induced changes to the Everglades are systemic (Gaiser et al., 2005).

Half of this ecosystem has been lost or altered due to drainage, and
concomitant urbanization to the east and conversion to agriculture to
the north (Scheidt and Kalla, 2007; Rumbold, 2019a). It is also compart-
mentalized by two major east-west highways, one of which forms the
northern border of Everglades National Park. Most of the remaining
2000 mile? (5180 km?) of the Everglades is in various forms of public
ownership (Davis and Ogden, 1994). To protect the Everglades from
phosphorus pollution transported by canals from the Everglades
Agricultural Area (EAA) up-gradient, Stormwater Treatment Areas
(STAs) were constructed to intercept and treat agricultural drainage
water before it reaches the marsh (Scheidt and Kalla, 2007; Kalla and
Scheidt, 2017). The STAs remove little sulfate [South Florida Water
Management District (SFWMD), 2016] or organic carbon (Gu et al.,
2006). The Central Everglades Planning Project has been proposed to
move more water from the STAs into the central Everglades for pur-
poses of hydrological restoration (U.S. Army Corps of Engineers and
SFWMD, 2014). In a separate project recently completed, flows were re-
stored into the northeastern corner of Everglades National Park, an area
where some phosphorus enrichment has been documented near inflow
structures that deliver canal water. Restoration efforts must continue to
avoid P-enrichment as well as identify how hydrologic restoration may
interact with sources of legacy P (Sarker et al., 2020). Canals that can
transport phosphorus are known to transport sulfate and organic car-
bon (Scheidt et al., 2000).

3. Methods
3.1. Everglades REMAP

The United States Environmental Protection Agency (USEPA) has
been conducting probabilistic surveys of the Everglades marsh since the
mid-1990s, an effort known as the Everglades Regional Environmental
Monitoring and Assessment Program (“REMAP”) (Stober et al., 2001;
Kalla and Scheidt, 2017). This statistical approach to estimating ecological
condition was initiated throughout the United States in the early 1990s
by USEPA (Thornton et al., 1994; USEPA, 1995; Diaz-Ramos et al., 1996;
Stevens Jr., 1997; Olsen et al., 1999; Stevens Jr. and Olsen, 2004), and con-
tinues to this day in the National Aquatic Resource Surveys (e.g., Olsen
et al, 2019). In 10 Everglades REMAP campaigns over four phases
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spanning 1995 to 2014, 1006 stratified random marsh sites have been
sampled (Fig. 1).

Eastern mosquitofish (Gambusia holbrooki) have been sampled as
part of REMAP since the 1990s because they are an ideal indicator of
mercury contamination for the following reasons: They are the most
abundant fish in the Everglades and are found throughout the ecosys-
tem in all freshwater habitats; they are easily sampled by dip-netting;
they are a prey fish in the food web for gamefish and wading birds, so
they provide insights for both human health and ecological health;
and because of their lifespan of only several months and a small home
range, they integrate mercury exposure over a short time frame in a
discrete area. During the five REMAP wet season sampling events,
mosquitofish were collected at 94% of the 532 Everglades marsh sites,
including wet prairie, sawgrass and cattail habitats. Everglades
mosquitofish are a secondary consumer and have been reported to be
at trophic level 2.0 to 3.0 (Loftus et al., 1998) and 4.0 to 4.5 (Williams
and Trexler, 2006). They consume animal prey (crustaceans, insects,
arachnids), algae, detritus and plant matter (Loftus et al., 1998).

3.2. GBM modeling

The response variable of interest was Log10 concentrations of total
Hg (ug kg™!) in mosquitofish from random locations in the Florida
Everglades. These data (n = 774 stations where fish were present)
were collected in the dry and wet seasons in three different time pe-
riods: the mid- to late 1990s (1995, 1996 and 1999), 2005, and 2014
(no dry season survey that year). Our analytical approach was to use
Generalized Boosted Models (GBM), a non-linear decision-tree-based
machine learning technique (Friedman, 2001), to determine which in-
dependent covariates in the collected data were most influential in de-
termining fish mercury levels. The 45 covariates listed in Table 1 were
collected, but not all of them were measured during all time periods
or during dry season surveys, and they varied in their % of missing
values, as shown in Table 1. The five covariates shown in bold had Pear-
son correlations >0.75 with other variables in the dataset, and the other
variables had fewer missing values, so the former five were dropped to
allow for more definitive interpretation of GBM results. Covariates that
showed a range greater than 100 units were log10 transformed. Of
these covariates with large ranges, if some of the original values were
between 0 and 1, then a Log10(X + 1) transform was used, where X
is the original value. Finally, a special transform was used for the two
redox potentials, as they varied between large negative and large posi-
tive values:

Log10(ABS(X))=Sign(X)

This transformation reduces the scale of the original variable, as a log
transform should do, but preserves the exact original ordering of the un-
transformed values. It takes a variable that ranges from -1000 to 1000,
for example, and creates a variable that ranges from -3 to 3.

The GBM technique addresses missing values in the covariates by
designating a third branch at each decision point to represent the
mean response for all observations with a missing value for the param-
eter in question (Greenwell et al., 2019). For example, if water temper-
ature were the parameter under scrutiny at a certain decision pointin a
decision tree, then there may be one branch for observations with water
temperature > 15 °C, one branch for observations with water tempera-
ture < 15 °C, and a third branch for observations with a missing value
of water temperature. In this manner, the model can account for poten-
tial correlations between absent data and the response variable (Garcia-
Laencina et al., 2010).

Habitat was coded as a nominal categorical factor. There were five
different habitat types where the samples were collected: sawgrass
marsh (n = 430), wet prairie (n = 279), cattail marsh (n = 36), slough
(n = 23), and “other” (n = 1 pond, 4 willow, and 1 brush). Season was
coded as a binary categorical factor, wet or dry. Subarea was coded as a
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nominal categorical factor for five different compartments within the
Everglades study area: Arthur R. Marshall Loxahatchee National Wildlife
Refuge, Water Conservation Area 2, Water Conservation Area 3 north of
Interstate Highway 75, Water Conservation Area 3 south of Interstate
Highway 75, and Everglades National Park (Fig. 1). Year was coded as
a nominal categorical factor, using the five different collection years:
1995, 1996, 1999, 2005, and 2014.

Using the GBM package (version 2.1.5, Greenwell et al., 2019) inR (R
Core Team, 2018), we developed a single model for the entire dataset,
but we recognize that there may be potential differences in the influence
of covariates over time and season. Rainfall, discharge, and water level
have varied widely during REMAP due to seasonal variation from dry
season to wet season, and to interannual variability. More stormwater
runoff enters the Everglades from the agricultural area to the north dur-
ing the summer wet season (Scheidt and Kalla, 2007). The non-linear
nature of the GBM technique can capture interactive effects amongst
the covariates if the tree depth is set sufficiently high.

Due to the inherent stochasticity in the results of fitting a GBM
model to a given dataset (i.e., slightly different models will be produced
when fitting the same dataset), we developed bootstrapped estimates
of model metrics by fitting 200 GBM models to the dataset. In each boot-
strap iteration, 80% of the dataset was randomly placed into a training
set to fit the model, and the remaining 20% was put into a testing set
to examine model predictive capabilities.

The GBM package in R has an array of model parameters that can af-
fect the fitting process and efficacy of the eventual solution. Our choices
of values for these parameters were as follows:

» Error Term: Gaussian

» Maximum Number of Trees: 10,000

» Shrinkage: 0.005

* Interaction Depth: 3

* Bag Fraction: 0.5

e Train Fraction: 1

* Minimum Number of Observations per Node: 5
 Cross-Validation Folds: 10

An in-depth discussion of these parameters can be found in the GBM
package documentation (Greenwell et al., 2019). Recommendations
within Greenwell et al. (2019) were followed for setting parameter
values, with some modifications based on best professional judgement.
Train Fraction was set to 1 because a true testing dataset was created at
the start of each iteration for assessment of model predictive capabili-
ties. In addition, out-of-sample error would be handled by examining
cross-validation folds, as explained later. A Bag Fraction of 0.5 results
in each successive tree in the iterative algorithm being fit to a random
50% of the observations in the training dataset, which mitigates
overfitting of the training data. An Interaction Depth of 3 means that
up to third-order interactions of model covariates can be captured by
the model. We did not include interactions of an order greater than 3 to
preserve model interpretability. The Minimum Number of Observations
per Node value prevents the model from being unduly influenced by out-
liers or clusters of odd samples. A value of 5 was deemed suitable for an
intermediate-sized dataset such as ours (n between 100 and 1000).
Smaller values of the Shrinkage parameter can increase model accuracy,
but at the cost of increased computational time and more trees in the op-
timal solution. Values between 0.01 and 0.001 are recommended; we
used 0.005.

As more trees are added to a GBM solution, the training data error
(RMSE) will continue to decline; the RMSE of out-of-sample data also
initially declines as more trees are added, but then rises if too many
trees are used, i.e., the model becomes overfit. There are several ways
to determine the optimum number of trees in a GBM solution; we
used 10-fold cross-validation to measure the point at which out-of-
sample RMSE began to rise.
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Everglades REMAP Sampling Locations

1995 - 2014
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Table 1

Everglades REMAP covariates of total mercury in mosquitofish.

Science of the Total Environment 792 (2021) 148321

Time periods collected

1995 1996 1999 2005 2014

Analyte Media Units % Missing  Year collected
Alkaline phosphatase activity ~Surface water — pmole/L*hr 23
Ash free dry weight Floc % 64
Ash free dry weight* Soil % 1
Bulk density Floc glcc 64
Bulk density Soil glec 20
Chlorophyll-a Surface water  pg/L 65
Chloride Surface water mg/L 46
Conductivity* Surface water ~ pSiemens/cm 1
Depth Floc ft 68
Depth Surface water  ft 0
Dissolved Oxygen Surface water mg/L 1
Filtered Ammonia Surface water  mg/L 46
Filtered Nitrate Surface water  mg/L 46
Filtered Nitrite Surface water mg/L 46
Habitat - Cattail, Sawgrass Marsh, Slough, 0
Wet Prairie, Other

Methyl mercury Surface water ng/L 2
Methyl mercury Floc ng/kg 56
Methyl mercury Periphyton ng/kg 40
Methyl mercury Soil ue/kg 6
pH Soil S.U. 65
pH Surface water  S.U. 1
Redox potential® Pore water mV 16
Redox potential® Surface water mV 35
Season - Dry/Wet 0
Subarea - 5 areas depicted in Figure 1 0
Soluble reactive phosphorus ~ Pore water mg/L 46
Soluble reactive phosphorus ~ Surface water mg/L 59
Sulfate? Surface water  mg/L 1
Sulfate® Soil ng/kg 36
Sulfide Pore water mg/L 46
Temperature Surface water  °C 1
Thickness Soil ft 0
Total carbon Soil % 65
Total mercury Surface water  ng/L 1
Total mercury® Floc ug/kg 53
Total mercury® Periphyton ng/kg 59
Total mercury® Soil ug/kg 0
Total nitrogen Surface water mg/L 26
Total nitrogen Soil % 65
Total organic carbon Surface water  mg/L 1
Total phosphorus! Surface water  pg/L 1
Total phosphorus® Floc mg/kg 63
Total phosphorus® Soil mg/kg 20
Turbidity? Surface water NTU 1
Year collected - 1995/1996/1999/2005/2014 0

1. These covariates were Log10 transformed.
2. These covariates were Log10(X + 1) transformed.

3. These covariates were Log10(ABS(X)) * Sign(X) transformed.
Analytes in bold were dropped from the analysis. See text (Section 2, first paragraph) for explanation.

1995/1996/1999/2005
1999/2005/2014

All

1999/2005/2014
1995/1996/2005/2014
2005/2014
1999/2005/2014

All

1999/2005/2014

All

All

1999/2005/2014
1999/2005/2014
1999/2005/2014

All

All

1999/2005/2014

All

All

2005/2014

All
1995/1996/1999/2005
1995/1996/1999/2014
All

All

1999/2005
1999/2005/2014

All

1995/1996/1999
1999/2005/2014

All

All

2005/2014

All

1999/2005/2014
1995/1996/1999/2005
All
1996/1999/2005/2014
2005/2014

All

All

1999/2005/2014
1995/1996/2005/2014
All

All
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Due to the stochasticity in creating training/testing datasets, a Bag
Fraction <1, and the random aliquoting of the training data into cross-
validation folds, sometimes a GBM model can produce a poor solution.
In each iteration of the bootstrap process, we used two metrics to ensure
a GBM model was “valid”:

* The optimum solution had more than 200 trees and less than 9800
trees (near to the maximum allowable, meaning convergence was
achieved).

» The number of unique fitted values produced by the model was at
least 25% of the total number of fitted values.

One hallmark of a poorly fit GBM model is a solution with few
trees, leading to a very low number of unique fitted values.
However, it is also possible to sometimes reach a good solution
with a relatively small number of trees. Therefore, it is more ro-
bust to assess the quality of the model by examining the number
of unique fitted values rather than the number of trees in the
solution.

We ran the bootstrap algorithm until 200 valid GBM models were
produced, and then computed the following characteristics for each of
the seven models:

« R? of Actual Observations versus Model Fits for the Training Data
« R? of Actual Observations versus Model Fits for the Testing Data
* The Influence of the Covariates

3.3. Partial dependence plots

In order to visually inspect how each covariate influences the re-
sponse variable in a model, the GBM package in R provides the ability
to create Partial Dependence Plots (PDPs), which show the univariate
relationship between a covariate (values plotted on the X-axis) and
the response variable (values plotted on the Y-axis), while factoring
out the effect of all other covariates. We created aggregate PDP plots
across the 200 GBM models for covariates of interest by saving the
grid of PDP points for each individual model run, and then plotting the
2.5th, 50th, and 97.5th percentiles of the y-values at each evaluated x-
value.

Science of the Total Environment 792 (2021) 148321
4. Results
4.1. The GBM model

Across the 200 models, the average R? value for the training data was
0.90, with a standard deviation of 0.03. As expected, this was higher
than the average R? value for the testing data, 0.58, with a standard de-
viation of 0.05. Fig. 2 shows a scatterplot of the average prediction for
each data point versus its observed value. The average prediction for
each data point is constructed using the approximately 20% of the 200
models in which the data point in question was placed into the testing
data, rather than the training data. As is shown by the R? value in this
figure, there is a slight gain incurred from making an aggregate predic-
tion based on many GBM models versus a single GBM model (0.60 vs
0.58).

A common occurrence when using GBM to model data is a muted
scale of model estimates, as seen by the slope in the regression line in
Fig. 2 being <1. GBM generally does a good job of fitting the pattern of
the observations, but it has difficulty with their magnitudes. The largest
GBM predictions are not as large as the largest observations and are not
as small as the smallest observations. The slope and intercept of the
best-fit linear regression line can be used to rectify this situation by ro-
tating the data ellipse, expanding the scale of the GBM fitted values. This
rotation has absolutely no impact on the R? value of the model. We as-
sume that the y-intercept of the original relationship has no interpretive
meaning other than its magnitude measures the severity of this muted
scale problem. The more muted the scale of the GBM estimates, the flat-
ter the ellipse that captures the cloud of points in the scatterplot, and
the larger the y-intercept.

If the regression line intercept in Fig. 2 (0.8111) is subtracted from
every y-value, and then the result is divided by the slope (0.5873), an
“adjusted” GBM prediction is calculated. When these adjusted values
are plotted versus observations (the blue dots in Fig. 3), the R? value re-
mains unchanged, but the slope and intercept become 1 and 0, as would
be ideal for a plot of model predictions versus observations. The data el-
lipse has simply been rotated about the mean predicted GBM value. Any
original GBM prediction above the mean becomes larger, while any
original GBM prediction below the mean becomes smaller, i.e., the
scale of the GBM predictions has been increased to match the scale of
the original observations.

Total Mercury in Gambusia
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Fig. 2. Plot of GBM average predicted values (across 200 model runs) versus observations for the dataset (n = 774).
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Fig. 3. Plot of the average predicted GBM values, rotated using the slope and intercept of the regression line in Fig. 2.

4.2. Influence of the covariates

Finally, we examined the influence of the covariates averaged across
the 200 GBM models (Table 2). Alkaline Phosphatase Activity in surface
water had the largest mean influence (10.1%), followed by Methyl
Mercury in periphyton (8.0%) and Sulfate in soil (7.6%). We created
PDP plots for only those covariates that accounted for at least 2% of
the total influence within the dataset.

4.3. The partial dependence plots

For the PDP analysis, 17 covariates were used that had >2.0% aver-
age influence across the 200 GBM model runs. These covariates' rela-
tionships to fish Hg are plotted in Fig. 4a-h and in Fig. S1a-i in the
Supplemental Information.

5. Discussion
5.1. The GBM model

The R? value for average predictions (Fig. 2) indicates that the GBM
model accounts for 60% of the variation in mosquitofish mercury in this
system. This outcome is robust for a large, disturbed ecosystem such as
the Everglades, given its seasonal, annual, and spatial differences.

5.2. Sulfate and methylated mercury

The PDP for surface water sulfate (Fig. 4g) exhibits a peak in fish Hg
at 2-3 mg/L sulfate, which is higher than background concentrations of
<1.0 mg/L (Orem et al., 2011), down to the current USEPA method de-
tection limit of 0.02 mg/L (Kalla and Scheidt, 2017). Other researchers
found a positive correlation between net MeHg production and surface
water sulfate concentrations across the Everglades over the range of
0.5-20 mg/L sulfate (Gilmour et al., 2007). Areas with intermediate con-
centrations of sulfate (1-20 mg/L) have sulfate and sulfide levels that
promote maximum MeHg production (Orem et al., 2011). However,
the PDP also shows an increase in fish Hg between 40 and 90 mg/L sul-
fate, which contradicts previous work that showed no increase above

Table 2

Average percent influence of examined covariates on mercury in mosquitofish across 200
GBM models; standard deviations in parentheses. PDP plots were made for the 17 covar-
iates with >2% mean influence (dashed line).

Variable Average influence (S.D.)
Alkaline phosphatase, surface water 10.1 (1.5)
Methyl mercury, periphyton 8.0(1.1)
Sulfate, soil 7.6 (1.5)
Methyl mercury, surface water 7.3 (0.9)
Temperature, surface water 5.6 (2.9)
Conductivity, surface water 5.1 (1.0)
Sulfate, surface water 4.5 (0.7)
Chlorophyll a, surface water 4.0(1.0)
pH, soil 3.2 (1.1)
Total mercury, surface water 3.2 (0.5)
Methyl mercury, soil 3.0 (0.6)
Habitat code 3.0(0.7)
Total organic carbon, surface water 2.8 (0.5)
Total phosphorus, surface water 2.4 (0.4)
pH, surface water 2.2 (0.6)
Total phosphorus, soil 2.2 (04)
Dissolved oxygen, surface water 2.0 (0.7)
Redox potential, surface water 1.8 (0.3)
Turbidity, surface water 1.8 (0.5)
Water depth 1.7 (0.3)
Total nitrogen, surface water 1.6 (0.3)
Total mercury, soil 1.5(04)
Redox potential, pore water 1.5(0.3)
Ash free dry weight, soil 1.5 (0.6)
Filtered nitrite, surface water 1.5(04)
Sulfide, pore water 1.4 (0.3)
Total phosphorus, floc 1.3 (04)
Filtered ammonia, surface water 1.3(0.3)
Total mercury, periphyton 1.2 (0.3)
Subarea 1.1(0.3)
Filtered nitrate, surface water 0.8 (0.2)
Soluble reactive phosphorus, surface water 0.7 (0.3)
Soil thickness 0.7 (0.2)
Methyl mercury, floc 0.6 (0.2)
Floc depth 0.6 (0.2)
Total mercury, floc 0.4 (0.1)
Bulk density, floc 0.3 (0.1)
Soluble reactive phosphorus, pore water 0.2 (0.1)
Year 0.1 (0.1)
Season 0.1 (0.1)
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20-25 mg/L (Orem et al.,, 2011). It should be noted that the PDPs of co-
variates in a GBM are influenced by the other covariates in a model, as
their effect is “integrated out” in order to produce the PDP for a specific
covariate. In a simple GBM model with only surface water sulfate and
surface water temperature as covariates of fish Hg, the PDP for surface
water sulfate (Fig. 5) is closer to what would be expected based on the-
ory, as fish mercury drops off at sulfate concentrations above 20 mg/L.
Nevertheless, the full model does suggest that the influence of surface
water sulfate on fish Hg extends further up the range of sulfate than
what has been reported by previous investigators. Of greater signifi-
cance is that fish Hg is very low at only two places on the curve, at ex-
tremely low concentrations of sulfate and at maximum sulfide
inhibition of the methylation reaction (Gilmour et al., 1992) where
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sulfate levels are high. The upward tail in the curve at the end of the
x-axis is anomalous. The wide confidence interval in that region of the
curve suggests that the overall conclusion about the unimodal relation-
ship of sulfate and fish Hg is not affected.

The PDP for sulfate in soil (Fig. 4c) has fish Hg peaking at about
500 pg kg~ ! sulfate and then decreasing as sulfate increases, consis-
tent with a unimodal relationship between sulfur and methyl
mercury. This relationship could be explained by the activity of
sulfate-reducing bacteria, which methylate mercury until inhibition
by moderate to high levels of sulfide occurs (Orem et al., 2011).
Since methylation in the Everglades can occur in the diurnally
oxygen-depleted environment of the soil-water interface, soil sulfate
can be expected to influence fish Hg.
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Fig. 4. a. PDP of mosquitofish Log;o mercury (ug kg ') on alkaline phosphatase activity (umol L~ ! h™) in surface water. Dashed lines represent the 2.5th and 97.5th percentiles of the
variability seen in 200 GBM model runs.

b. PDP of mosquitofish Log;o mercury (ug kg~ ') on methyl mercury in periphyton (ug kg ~'). The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM
model runs.

c. PDP of mosquitofish Log;o mercury (ug kg™") on sulfate in soil (ug kg™"). The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM model runs.
d. PDP of mosquitofish Log;o mercury (pg kg~!) on methyl mercury in surface water (ng/L). The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM
model runs.

e. PDP of mosquitofish Log;o mercury (ug kg~!) on surface water temperature (°C). The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM model runs.
f. PDP of mosquitofish Log ;o mercury (ug kg ~") on conductivity of surface water (1S/cm). The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM model runs.
g. PDP of mosquitofish Log;o mercury (ug kg ') on Log;o sulfate (mg/L) in surface water. The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM model runs.
h. PDP of mosquitofish Log;o mercury (ug kg™ ") on chlorophyll-a in surface water (ug/L). The dashed lines represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM model runs.
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Fig.4 (continued).

5.3. Other partial dependence plots

The PDPs for mercury (methyl mercury in periphyton, Fig. 4b;
methyl mercury in surface water, Fig. 4d; total mercury in surface
water, Fig. S1b; and methyl mercury in soil, Fig. S1c) show a largely
straightforward relationship with fish Hg. Inorganic mercury enters
the water from the atmosphere, is methylated, and then is taken up
by biota, including periphyton, that form the food web leading to fish.
The curve for methyl mercury in soil shows a slight drop after the rise
probably because parts of the system with the most methyl mercury
in the soil, e.g. the northern reaches of Water Conservation Area 3
(Stober et al., 2001), are where the food web has been degraded. Bioac-
cumulation is less in these areas (Scheidt and Kalla, 2007). The methyl
mercury that cannot be efficiently incorporated into the food web is in-
stead sequestered in the soil. Mass budget estimates based on data from
the 2005 REMAP campaign showed that 58% (in the wet season) to 86%
(in the dry season) of the methyl mercury produced in the ecosystem is

retained in the soil, with 6% (wet season) to 9% (dry season) getting
buried (Liu et al., 2008). Fluxes of mercury out of the aquatic food
web have been observed in other ecosystems, e.g. Walters et al.
(2020).

The curve for conductivity (Fig. 4f) resembles the curves for sulfate
in Figs. 4g and 5, in that it is unimodal. All REMAP conductivity values
below 100 pS/cm, toward the y-axis, were found within the Refuge, an
area that has generally had lower fish Hg throughout REMAP surveys.
The fish Hg peak may be spatially associated with optimal levels of
other constituents needed for efficient methylation, namely those of or-
ganic carbon and sulfate (Aiken et al., 2011; Orem et al., 2011; Scheidt
and Kalla, 2007). The portions of the Everglades with the highest fish
Hg, WCA3 and the Park, have surface water organic carbon concentra-
tions <20 mg/L, as reflected in Fig. S1e.

The curve for surface water pH (Fig. S1g) is, in contrast to soil pH
(Fig. S1a), more straightforward. It shows a broad range of pH optimal
for mercury bioaccumulation, from 6.5 to 8.0 S.U. This pH range covers
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Fig. 5. PDP of mosquitofish Log;, mercury (ug kg™ ') on surface water sulfate (mg/L) in a model with surface water temperature as the only other covariate in the model. The dashed lines

represent the 2.5th and 97.5th percentiles of the variability seen in 200 GBM model runs.

all of the Everglades except the Refuge, which has a pH of 5.5 to 7.0
(Scheidt and Kalla, 2007).

The PDP for surface water temperature (Fig. 4e), though not strictly
monotonic, has the general form of lower fish Hg levels at higher tem-
peratures. This result may be explained by sunlight. Higher tempera-
tures tend to be found in wet prairies and sloughs during daylight
because the water is less shaded than in sawgrass marshes and cattails.
Photodegradation has been proposed as either the predominant mech-
anism of mercury demethylation in surface waters (Sellers et al., 1996;
Tai et al., 2014) or a major mechanism (Sellers et al., 2001; Li et al.,
2010). Fig. S1d provides corroboration for this explanation by showing
that mosquitofish in wet prairies and sloughs have less mercury than
those in sawgrass marshes.

There are four covariates in surface water, alkaline phosphatase ac-
tivity (Fig. 4a), chlorophyll-a (Fig. 4h), total organic carbon (Fig. S1e),
and total phosphorus (Fig. S1f), that can be associated with trophic
state. Their curves show less biomagnification of mercury at higher con-
centrations of the covariate, except for alkaline phosphatase, which is
the inverse of phosphorus because there is greater alkaline phosphatase
activity in low-phosphorus environments (Newman et al., 2003). In ad-
dition to sulfur and organic carbon (Scheidt et al., 2000), agricultural
runoff that enters the Everglades contains phosphorus at levels above
background concentrations found in the pristine oligotrophic parts of
the system, which have very low phosphorus (McCormick et al., 1999;
Noe et al., 2001). Over time, this input has led to eutrophication in
some areas, which in turn degraded the original habitat, producing de-
pauperate food webs and short food chains, without calcareous periph-
yton at their base, which are less efficient at biomagnification (King and
Richardson, 2007; Abbey-Lee et al., 2013; Pollman, 2014; Wang et al.,
2014). The best example of this effect is cattail marshes, which have
the least fish Hg of any habitat (Fig. S1d). Invasive cattail (Typha
domingensis) can replace the native sawgrass (Cladium jamaicense)
and slough communities where excessive phosphorus has accumulated
in the soil (Davis, 1994; Scheidt and Kalla, 2007; McCormick et al.,
2009), but even sawgrass responds to nutrient enrichment by getting
taller (Stober et al., 2001). Sawgrass can be twice as tall (~2 m) and
twice as dense (>50 culms/m?) in high phosphorus locations [Richards
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and Kalla, unpublished results (from the 2005 REMAP campaign)]. With
periphyton gone and prolonged shading by tall, dense macrophytes, the
aquatic community is visibly altered. While some stable isotope work
suggests that high phosphorus does not shorten food chains, it also sug-
gests that high phosphorus changes the base of the food web from pe-
riphyton to floc derived from macrophytes (Kendall et al., 2003).
Methyl mercury in floc was the seventh least influential covariate in
our model, at 0.6%, whereas methyl mercury in periphyton was second
most influential, at 8.0%, ranking behind only alkaline phosphatase.

The PDP for total phosphorus in soil (Fig. S1h) reflects the trophic ef-
fect as well. Fish Hg drops off starting at 100 mg/kg, well below the
500 mg/kg specified in the State of Florida's regulatory definition of
Everglades locations impacted by phosphorus [Florida Administrative
Code 62-302.540(3)(d)].

The curve for dissolved oxygen (DO) in surface water (Fig. S1i) rises
from near O to about 5 mg/L and then levels off. This form also reflects
trophic state, as cattail marshes, often associated with phosphorus en-
richment, have the lowest DO of any habitat type in the Everglades
(Belanger et al., 1989; McCormick and Laing, 2003).

5.4. Relative percent influence of covariates

Of the eight most influential covariates (those with at least 4%
influence in Table 2), two were methyl mercury in periphyton and sur-
face water, two can be trophic indicators (alkaline phosphatase and
chlorophyll-a), one can be a marker of stormwater transport (conduc-
tivity), and two can be enablers of methylation (sulfate in soil and in
surface water). While these covariates had an average individual influ-
ence ranging from 4.0% to 10.1%, together they accounted for 52.2% of
the influence on fish Hg. Sulfate, the enabler, is transported to and
through the Everglades by canals, along with phosphorus and organic
carbon. The ecosystem receives a contaminant from the atmosphere
whose presence in the aquatic food web is both mediated and mitigated
by other chemical constituents in the water. As suggested by their PDPs,
whereas sulfur promotes mercury methylation at optimal levels of sul-
fate, phosphorus acts to oppose mercury biomagnification at high levels
of total phosphorus. Our model indicates that water moved into the
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Everglades with low phosphorus, but sulfate and carbon above back-
ground, can influence mercury bioaccumulation in relatively pristine
parts of the system where food webs are complex and based on calcar-
eous periphyton.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.148321.
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Figure Sla. PDP of mosquitofish Logio mercury (ug kg) on soil pH (S.U.). The dashed lines
represent the 2.5 and 97.5" percentiles of the variability seen in 200 GBM model runs.
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Figure S1b. PDP of mosquitofish Logio mercury (ug kg?) on total mercury (ng L) in surface
water. The dashed lines represent the 2.5 and 97.5% percentiles of the variability seen in 200

GBM model runs.
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Figure S1c. PDP of mosquitofish Logio mercury (ug kg'') on methyl mercury in soil (ug/kg). The
dashed lines represent the 2.51and 97.5% percentiles of the variability seen in 200 GBM model

runs.
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Figure S1d. PDP of mosquitofish Logio mercury (ug kg!) on habitat code. The boxes are the
interquartile range and the hozontal lines are the median.
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Figure Sle. PDP of mosquitofish Logio mercury (ug kgt) on total organic carbon (mg L) in

surface water. The dashed lines represent the 2.5""and 97.5™ percentiles of the variability seen
in 200 GBM model runs.
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Figure S1f. PDP of mosquitofish Logio mercury (ug/kg) on Logio total phosphorus in surface
water (ug/L). The dashed lines represent the 2.5™ and 97.5% percentiles of the variability seen

in 200 GBM model runs.
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Figure S1g. PDP of mosquitofish Logio mercury (ug/kg) on pH of surface water (S.U.). The
dashed lines represent the 2.5" and 97.5% percentiles of the variability seen in 200 GBM model
runs.
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Figure S1h. PDP of mosquitofish Logio mercury (ug/kg) on Logio total phosphorus in soil
(mg/kg). The dashed lines represent the 2.5™and 97.5%" percentiles of the variability seen in
200 GBM model runs.
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Figure S1i. PDP of mosquitofish Logio mercury (ug/kg) on dissolved oxygen in surface water
(mg/L). The dashed lines represent the 2.5 and 97.5" percentiles of the variability seen in 200
GBM model runs.



