INTEGRATED DELIVERY SCHEDULE – A SOUTH FLORIDA ECOSYSTEM RESTORATION PROGRAM SNAPSHOT THROUGH 2030

The Integrated Delivery Schedule (IDS) is a forward-looking snapshot of upcoming design and construction schedules and programmatic costs at a "top" line level for the South Florida Ecosystem Restoration (SFER) Program. It includes Modified Water Deliveries to Everglades National Park, Critical Projects, Kissimmee River Restoration, non-Comprehensive Everglades Restoration Plan (CERP) Central and Southern Flood (C&SF), and CERP projects. The Comprehensive Everglades Restoration Plan (CERP) focuses on the "getting the water right." CERP—the largest aquatic ecosystem restoration effort in the nation, spanning over 18,000 square miles—is designed to improve the health of more than 2.4 million acres.

The IDS reflects the sequencing strategy for planning, design, and construction and does not include costs for completed work or land acquisition. The IDS does not require an agency action and is not a decision document. It is a tool that provides information to decision-makers—a living document that is updated as needed to reflect progress and/or program changes. The IDS synchronizes program and project priorities with the State of Florida and achieves the CERP restoration objectives at the earliest practicable time, consistent with funding constraints and the interdependencies between project components. All Everglades restoration-related projects upon which the CERP is dependent—such as the Herbert Hoover Dike, the Modified Water Deliveries to Everglades National Park, Tamiami Trail Next Steps bridging, and the Restoration Strategies projects—are reflected in the IDS schedule, but are not included in the funding scenario. These projects are funded through other program authorities or by other entities. Restoration projects by others are also not included but are considered during planning.

The IDS reflects the project components, their sequence, and approximate costs. It does not reflect the interdependencies and other factors that can affect the funding and scheduling of projects, such as permitting, environmental review, and project implementation. The IDS also does not reflect the funding required to sustain the work displayed in the funding scenario. The funding shown for FY20 and beyond is only notional, representing approximate funding levels that would be needed to sustain the work displayed in the funding scenario. The funding does not represent a commitment by the Administration to budget the amounts shown.

NOTE: The funding shown for FY20 and beyond is only notional, representing approximate funding levels that would be needed to sustain the work displayed in the funding scenario. The funding does not represent a commitment by the Administration to budget the amounts shown. Modifications to the IDS include changes based on weather-related conditions, associations of contacts, and funding levels.
BUILDING STRONG®

INCREMENTAL RESTORATION IS A FUNDAMENTAL TENET OF SFER

Advancing construction and receiving ecosystem benefits from the Central Everglades Planning Project is possible and achievable because several key projects have reached important milestones through 2019. These Non-CERP and Foundation Projects (in the blue section of the IDS) are CEPP predecessors and interdependencies. Improvements to the system since 2012 are estimated to provide significant benefits in 2020, including these:

- Improve water deliveries into Everglades National Park and take steps to restore natural hydrologic conditions in ENP, resulting in restored ecological diversity.
- Increased ENP average annual inflow by ~63%
- Increased distribution at Tamiami Trail to North East Shark River Slough from 19% to 77%
- Increased annual flow to Taylor Slough by ~37%
- Minimize the damaging freshwater flows to Manatee Bay/Barnes Sound and increase overland flow to Eastern Panhandle.

EVEGLADES SCIENCE

The defining characteristics of the original Everglades include sheetflow, low levels of nutrients in freshwater wetlands, healthy and productive estuaries, resilient plant communities, and an abundance of native wildlife. The scientific community has been monitoring the overall health of the Everglades for many years. They have collected data that shows the ecosystems of the Everglades are struggling to support the plants and animals that live there and the natural resources they provide to all. Without healthy ecosystems, the economy, tourism, and recreational activities of south Florida suffer. However, many restoration projects scheduled for operation and construction in the next ten years are designed to help improve and protect this unique ecosystem.

As an example, the most important process affecting wading bird nesting in the Everglades is the availability of prey (fishes and aquatic invertebrates), which is controlled by the duration and frequency of wetland flooding and drying. The historic 2018 wading bird nesting season (~466% above 2017) let Everglades scientists see in real time how small changes in habitat conditions can influence wading bird nesting success. Many large native prey fishes can rapidly respond to the longer hydroperiods. These hydrologic conditions are a result of the increased ENP inflow that is the availability of prey (fishes and aquatic invertebrates), which is controlled by the duration and frequency of wetland flooding and drying. The historic 2018 wading bird nesting season (~466% above 2017) let Everglades scientists see in real time how small changes in habitat conditions can influence wading bird nesting success. Many large native prey fishes can rapidly respond to the longer hydroperiods.

Learn more at evergladesecohealth.org.