

Aquifer Storage and Recovery (ASR) Science Plan

January 28, 2021

Essential Findings from the CERP ASR Studies

- No "fatal flaws" were uncovered
- Fewer wells (140) could be constructed about 80 near Lake Okechobee
- Large capacity (5 mgd) ASR wells can be built; however, variability in hydrogeology makes it prudent to do exploratory programs first
- Water recovered did not show significant ecological effects, although analysis was based on limited testing
- Further implementation of CERP ASR should proceed in a phased approach

NRC Review of ASR Regional Study

CENTRAL AND SOUTHERN FLORIDA PROJECT COMPREHENSIVE EVERGLADES RESTORATION PLAN

FINAL TECHNICAL DATA REPORT AQUIFER STORAGE AND RECOVERY REGIONAL STUDY MAY 2015

Review of the Everglades

Aquifer Storage and Recovery

Regional Study

NATIONAL RESEARCH COUNC

No "fatal flaws" preclude the use of ASR in CERP

- An incremental approach may involve phased clusters of ASR wells while providing some early benefits
- 6 Topics of Remaining Uncertainty
 - Future Construction and Testing
 - Understanding Phosphorus Reduction Potential
 - Operations to Maximize Recovery
 - Disinfection/Treatment Technology
 - Ecotoxicology and Ecological Risk Assessment
 - Water Quality

LOWRP Recommended Plan

- Recommended Plan
 - components:
- Shallow aboveground storage
 - Wetland Attenuation Feature (WAF)
 - ~ 13,600 acres
 - 46,000 ac-ft storage
- Aquifer storage and recovery
 80 ASR wells
 - 448,000 ac-ft of storage per year (400 MG/day)

Wetland restoration

- Paradise Run ~ 3,600 acres
- Kissimmee River Center ~ 1,200 acres

LOWRP ASR Well Program

- State Appropriations
 - Received \$50M in FY19-20
 - Additional \$50M in FY20-21
- "Design, engineering, and construction of specific project components designed to achieve greatest reductions in harmful discharges to the Caloosahatchee and St. Lucie Estuaries" (Specific Appropriation 1642A)
- Incremental, phased approach being implemented in the Program and the specific watershed ASR projects prioritized for these State Appropriations

ASR Phased Implementation

sfwmd.gov

- Reactivate 2 existing systems
- Siting and constructability evaluations
- Continuous cores
- Permitting
- Exploratory wells at 2 proposed cluster locations
- Treatment technology evaluation
- Continuing USGS research

ASR Science Peer Review Panel (PRP)

- Recognized, independent south Florida experts to assist in addressing remaining ASR uncertainties
 - Dr. Jon Arthur, FGS
 - Dr. Tom Missimer, FGCU
 - Dr. Rene Price, FIU
 - Reid Hyle, FFWCC Research Institute
 - Dr. Sam Upchurch, retired USF
- Workshops during July and November
 - Reviewed the results of previous ASR studies
 - Provided a PRP report containing suggestions for addressing the NRC recommendations

Future Construction and Testing

- More local scale information is needed on the attributes of the Avon Park Permeable Zone
 - Reactivate the L63N ASR well
 - Mechanical integrity test (2020)
 - Cycle testing (2023-2024)
 - Continuous cores at new locations (2021-2022)
 - Drilled to 2,000 feet bls
 - Water sampling at 30-foot intervals
 - Mineralogy, porosity, geotechnical and hydraulic properties
 - Geochemical modeling
 - Geophysical logging
 - Slabbed, described and stored by the USGS

Future Construction and Testing (cont.)

- Use groundwater models, geophysics, and tracer tests to anticipate heterogeneity, anisotropy, and travel times
 - Constructing multi-level, nested exploratory test wells at two locations along C38 canal (2021-2022)
 - Monitoring wells
 - Seismic surveys
 - Pumping (withdrawal) and tracer (injection) tests (2022)
 - Wellfield-scale groundwater models (2022)

Understanding Phosphorous Reduction

- More research into the long-term nutrient removal mechanisms and rates should be undertaken
 - USGS to develop flow-through column experiments using continuous cores (2021)
 - Geochemical modeling from continuous core water quality data
 - Enhanced monitoring P and N species when Kissimmee and L63N systems are back up and running (2023)
 - Revision of the SFWMD Phosphorus Load Simulation Model

Operations to Maximize Recovery

- Establish and maintain a Buffer Zone (TSV = Recovery volume + Buffer Zone) during cycle testing
- Locate ASR systems adjacent to large water bodies to allow for adequate mixing zones

ASR Well								
	Targe Volun	t Storage ne (TSV)	Recovered Water Volume					
	Stored Water	Bu Zo	uffer Native Groundwater One Quality					

Disinfection/Treatment Technology

 Develop appropriate pretreatment strategies to consistently meet regulatory requirements
 Develop strategies to attenuate arsenic mobilization

Disinfection/Treatment Technology (cont.)

- Continue research on subsurface pathogen inactivation using a wider array of pathogens
- Couple pathogen inactivation studies to groundwater travel times and distances using local scale groundwater modeling

Ecotoxicology and Risk Assessment

- Longer-term recovery periods will allow for extended duration of chronic and bioaccumulation evaluations and mesocosms
- Quantitative, probabilistic Ecological Risk Assessment using updated EPA methodology to incorporate all of the chemical, toxicity, bioaccumulation, and other data collected throughout the project into a comprehensive assessment

Water Quality

- More research is needed to understand the impacts of different source water qualities on the long-term redox evolution of the aquifer and its effect on arsenic mobilization
- Need to determine how development of a buffer zone can be utilized to reduce sulfate concentrations in recovered water
- Need to determine how far arsenic can be transported within the aquifer using extended cycles
- More understanding on the spatial variability of gross alpha and radium at future locations should be addressed

Science Plan Study Schedule

	2021	2021-22	2021-22	2021-24	2024-26	2026-30
	Continuous	Reactivation of	Test/Exploratory	Design, Permitting,	Initial Ovelo Testing	Extended Testing and
	Cores	Existing Wells	Multiple Wells	and Construction	Initial Cycle Testing	Wellfield Expansion
Local scale information on APPZ attributes						
P removal mechanisms						
Pathogen inactivation						
Injection pressures for fracture potential						
Chronic toxicity testing						
Arsenic transport within aquifer using buffer zone						
Buffer zone usage to reduce sulfate concentrations						
Fate of sulfate in recovered water to form methylmercury						
Groundwater travel times						
Local scale model for heterogeneity, anisotropy, fracturing, travel times				-		
Pretreatment technologies to remove arsenic						
Well spacing and optimal recovery efficiency						
Anisotropy analysis used for orienting wells						
Tracer studies for flow directions						
Cross-well tomography and geophysics						
Locate clusters near large water bodies						
Technologies to meet regulatory requirements						-
Multi-cluster chronic toxicity testing						
Community-level effects and bioaccumulation						
Prolonged bioconcentration studies						
Probabilistic, quantitative risk assessment						
Variability of gross alpha and radium in recovered water						
Source water effects on redox evolution of aquifer						
Improve/extend cycle tests						
Establish buffer zone						
Operate multi-well pairs and clusters						

Next Steps

- Agency Technical Review by USACE
- Construction of continuous cores at two or more locations
- Analysis of cores for mineralogic and geotechnical properties
- Continuing the next phase of treatment technology evaluation
- USGS column studies of nutrient reduction/plugging potential
- Construction of exploratory wells at C38S and C38N locations
- Reactivation of Kissimmee and L63N ASR systems
- Early start tasks for ecological assessments
- Draft Plan will be available for public review in February

Discussion

www.sfwmd.gov/asr

